

Available online at www.sciencedirect.com

Tetrahedron 60 (2004) 61-72

Tetrahedron

Simple and efficient synthesis of *O*-unprotected glycosyl thiourea and isourea derivatives from glycosylamines

Óscar López, Inés Maya, José Fuentes and José G. Fernández-Bolaños*

Departamento Química Orgánica, Facultad Química, Universidad Sevilla, Apartado 553, E-41071 Seville, Spain

Received 4 July 2003; revised 9 October 2003; accepted 31 October 2003

Abstract—Practical, facile and high-yielding one-pot syntheses of different *O*-unprotected glycopyranosyl thioureas and thioureido bolaamphiphiles (two-step synthesis) and of 2-amino-4,5-dihydro-(1,2-dideoxy- β -D-glucopyranoso)[1,2-*d*]oxazoles (three-step synthesis) from glycopyranosylamines are reported. The method involves the preparation of *O*-unprotected β -D-gluco (and D-galacto)pyranosyl isothiocyanates which are in equilibrium with the corresponding 1,2-cyclic thiocarbamates, coupling with amines to afford glycosyl thioureas and treatment with yellow mercury (II) oxide to give *trans*-fused bicyclic isoureas. A D-*gluco* trehazolin analogue is prepared in this way. In situ transformation of *N*,*N*-dialkyl, *N'*-glucopyranosyl thioureas into the corresponding ureas is also reported. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Isothiocyanates are versatile synthetic intermediates that have been widely used in the synthesis of thiocarbamoyl derivatives. The strong electrophilicity of the NCS group enables these heterocumulenes to take part in addition and cycloaddition reactions, making them extremely useful in the preparation of thioureas and heterocyclic compounds.¹

In the last two decades, isothiocyanato derivatives of carbohydrates, mainly *O*-protected glycopyranosyl isothiocyanates have been used to prepare glycoconjugates of biological interest,^{2,3} such as thioureidosugars,⁴ *N*-nucleosides,⁵ *N*-glycopeptides,⁶ spiroglycosides,⁷ spironucleosides related to (+)-hydantocidin,⁸ glycodendrimers and glycoclusters⁹ mimetics of natural oligo- and polysaccharides, and bridged thiourea calix-sugars.¹⁰

Due to the facile reaction between the isothiocyanato and hydroxyl groups, the most readily available isothiocyanato derivatives of sugars are *O*-protected glycosyl isothiocyanates,^{2,8} which can be prepared by reaction of *O*-acylated glycosyl halides with silver¹¹ or potassium thiocyanates,¹² by reaction of per-*O*-acylated aldopyranoses with trimethylsilyl isothiocyanate,¹³ by reaction of per-*O*-acylated glycosylamines with thiophosgene,¹⁴ or starting from glycals and potassium thiocyanate in the presence of iodine.¹⁵

At the same time, 2-amino-2-oxazolines (cyclic isoureas) are biologically active molecules,¹⁶ which are active as

0040–4020/\$ - see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2003.10.092

imidazoline receptor agonist¹⁷ and as histamine receptor antagonist.¹⁸ They can be used in the treatment of hypertension (e.g. rilmenidine),¹⁹ as appetite suppressant (e.g. aminorex),²⁰ and to inhibit pheromone synthesis.²¹ The isolation of trehazolin²² **1** and allosamidin²³ **2**, the first natural cyclic isourea derivatives of carbohydrates, with potent activity as threhalase and chitinase inhibitors respectively, has in the last decade encouraged research in the synthesis of trehazolin, allosamidin and related compounds containing modified cyclitol or sugar moieties.^{24–26} Syntheses of 2-amino-4,5-dihydro-(1,2-dideoxy- α -D-glucofuranoso)[1,2-*d*]oxazoles from *cis*-fused cyclic sugar thiocarbamates have also been reported.²⁷

Recently, we have communicated the preparation of Ounprotected glycosyl isothiocyanates and their transformation

Keywords: Isothiocyanates; Thiocarbamates; Thioureas; Isoureas; Thiophosgene; Mercury (II) oxide.

^{*} Corresponding author. Tel.: +34-95-4557151; fax: +34-95-4624960; e-mail address: bolanos@us.es

Scheme 1. Reagents and conditions: (i) $CSCl_2$ (1.2 equiv.), pH 8 (NaHCO₃/CO₂), 1:1 water/dioxane, -10 °C, 30 min; (ii) R^5R^6NH (1.2 equiv.), [0.6 equiv. of alkanediamines], pH 9 (NaHCO₃/CO₂), rt, 2–5 h; (iii) yellow HgO (3 equiv.), rt, 1–3 h; (iv) yellow HgO (3 equiv.), rt, 2 h.

into glycosyl thioureas²⁸ and also the preparation of cyclic isourea derivatives.²⁹ Therein we described the one-pot preparation of the *O*-unprotected glycopyranosyl thioureas **12** and **13** starting from glycopyranosylamines **3** and **4** via intermediate glycopyranosyl isothiocyanates **6** and **7**. The one-pot transformation of the glucosylamine **3** into dihydroglucopyranoso[1,2-*d*]oxazoles **14**, structurally related to trehazolin **1** and allosamidin **2**, was also reported.

2. Results and discussion

Some data on the reaction of *O*-unprotected glycosyl (glucosyl, maltosyl and lactosyl)amines with thiophosgene to afford the corresponding glycosyl isothiocyanates have been reported.³⁰ These heterocumulenes were studied as glycosidase inhibitors, and as affinity labels of proteins involved in the transport of carbohydrates through cell membranes, but they were later reported as undergoing ready decomposition under physiological conditions.³¹ In the case of β -D-glucopyranosyl isothiocyanate **6**, the synthesis was low-yielding (22%), the characterization was based only on IR spectroscopy, and no further chemistry was reported.^{30b}

In our hands, the reaction of β -D-glucopyranosyl amine 3^{32} with thiophosgene leads (Scheme 1) to a mixture of β -D-glucopyranosyl isothiocyanate 6 and 1,2-cyclic thiocarbamate 9 which are in a solvent dependent equilibrium.

The best yield of the mixture of **6** and **9** (64%) was obtained using a buffered (NaHCO₃/CO₂, pH 8) suspension in 1:1 water/ dioxane, and an excess (20%) of thiophosgene at -10 °C for 40 min. The **6** to **9** ratio, measured by integration of ¹H MNR signals, is 3:2 in D₂O and 1:5 in DMSO-*d*₆. This behaviour may be explained in terms of the hydrogen bonding of the NH with the solvent, stronger in the case of DMSO than of D₂O.³³

Similarly, treatment of β -D-galactopyranosyl amine 4^{34} with thiophosgene leads to a mixture of isothiocyanate 7 and thiocarbamate 10 (51%) which were shown to be in a solvent dependent equilibrium that is also shifted towards the thiocarbamate structure in dimethylsulfoxide (1:1 ratio in D₂O and 2:5 in DMSO-*d*₆). The 6/9 and 7/10 isothio-cyanate/thiocarbamate mixtures underwent appreciable decomposition after storage at 0 °C for several days. However, the 6/9 and 7/10 mixtures could be used without further purification in the one-pot synthesis of glucopyranosyl thioureas 12a-k and galactopyranosyl thioureas 13b and 13d, respectively, in good yield (Table 1).

Entry	R	HOLO H R	HO OH OH H
		ОН В 12 , yield (%)	ОН В 13, yield (%)
1	K N ↓	12a , 66	_
2	H CH ₃	12b , 63	13b , 53
3	۲ ۲ ۲	12c , 72	_
4	2 22 N	12d , 62	13d , 69
5	2 N	12e , 80	_
6		12f , 74	_
7	H N SO ₃ Na	12g , 72	_
8	чно он он он	12h , 55	_
9		12i , 73	_
10		12j , 84	_
11	H H HHO OH V I2 S OH OH OH OH	12k , 78	_

Table 1. Synthesis of thioureas **12**, **13** from β -D-glycopyranosylamines **3**, **4**

The reaction of β -D-mannopyranosyl amine³² **5** with thiophosgene produced the bicyclic thiocarbamate **11**, isolated in a 46% yield. This thiocarbamate is formed through isothiocyanate **8**, but there is no equilibrium between **8** and **11**, as shown by its NMR spectra. Besides that, thiocarbamate **11** did not react with *p*-toluidine as latent isothiocyanate.

oxazolidine rings. Thiocarbamates **9** and **10** are *trans*-fused bicyclic compounds with unfavourable puckering in the sixmember ring due to the decrease of exocyclic equatorial–equatorial angle of the tetrahydropyran unit at the ring junction;³⁵ the strain of this fusion favours opening with formation of the isothiocyanates **6** and **7**. Compound **11** is a stable *cis*-fused bicyclic system with no tendency to opening, as flattening of the six-membered ring to reduce the exocyclic *cis* torsion angle is relatively facile.

The different behaviour of the hydrindane-type systems **9** and **10** on one hand and **11** on the other is due to the differences in the strain of the ring fusion of the tetrahydropyran and the

The structures of isothiocyanates 6, 7 and thiocarbamates

Compound			Sugar ring			Isothiocya	nate, (thio)carbamoyl moiety	, isoureido
	δ H-1	δ Η-2	$J_{1,2}$	δ C-1	δ C-2	$\delta C = X$	$\delta N'$ -CH ₂	δ C-1 ^{/a}
6 ^b	4.94	3.43	8.2	86.9	72.5	143.2	_	
7 ^b	4.81	3.63	8.0	87.2	72.9	142.8		
9 ^b	5.09	4.08	9.6	88.2	86.8	193.7	_	
10 ^b	4.92	4.35	10.0	89.0	86.1	193.3		
11 ^b	5.47	4.98	3.7	82.9	84.7	191.6	_	
12a ^b	5.42	3.37	8.9	84.6	72.7	183.1	_	
12b ^b	5.27	3.48	_	84.1	72.7	183.0	45.0	
12c ^c	5.02	3.14	8.6	83.2	70.1	183.4	43.6	
12d ^b	5.69	3.58	8.8	86.4	73.2	180.0	46.6	
12e ^b	5.62	3.51	8.5	86.6	73.2	180.4	51.4	
12f ^b	5.33	3.48	8.9	84.2	72.9	183.8	49.2	
12g ^b	5.29	3.95	9.0	84.0	72.8	183.6	41.1	
12h ^b	5.49	3.38	9.0	83.9	72.2		—	83.9
12i ^b	5.41	3.48	8.9	84.3	72.8	185.0	—	82.4
12j ^b	5.30	3.45	9.0	83.9	72.7	182.0	45.2	83.9
12k ^c	5.02	3.11	8.8	83.3	72.4	183.1	43.6	83.3
13b ^b	5.18	3.75-3.61	—	84.8	70.8	183.1	45.9	
13d ^b	5.62	3.79	9.0	86.8	70.7	179.9	41.5	
14a ^d	4.82	3.60	9.6	95.2	85.6	160.0	—	
14b ^b	4.79	3.54	9.6	94.8	84.6	163.4	41.9	
14c ^d	4.75	3.49	9.7	96.8	86.7	164.0	43.4	
14d ^d	4.74	3.48	9.7	97.1	86.8	165.6	43.4	
14e ^d	4.73	3.49	9.7	96.8	87.2	163.5	47.1	
14h ^b	4.89	3.71	9.8	95.2	86.0	163.0	—	84.3
14j ^b	4.79	3.55	9.5	97.1	86.8	165.6	44.3	97.1
141 ^c	4.59	3.29	9.6	95.9	85.5	161.1	45.4	
14m ^d	4.69	3.44	9.6	96.9	87.0	164.1	43.9	97.8
15d ^b	4.87	3.42	9.2	81.9	71.9	158.3	41.7	
15e ^b	4.93	3.48	9.2	83.0	72.9	159.4	46.3	_

Table 2. Relevant NMR data (δ , ppm; J, Hz) for compounds 6, 7, 9–15

^a C-1' refers to anomeric carbon of the aglycon part.

^c In $(CD_3)_2SO$.

^d In CD₃OD.

9–11 were supported on spectroscopic data (Table 2). The most significant difference in the NMR spectra of isothiocyanates **6**, **7** and thiocarbamates **9–11** was the ¹³C chemical shift on the C=S group, which resonated roughly at 143 ppm for **6** and **7**, and about 191–194 ppm for **9–11** in agreement with reported data for related isothiocyanato sugars³⁶ and five-membered thiocarbamate derivatives.⁷

Reaction of the equilibrium mixtures 6/9 and 7/10 in the flask where they were formed, with *p*-tolyl or alkyl primary amines, diethylamine, piperidine, sodium salts of aminoacids glycine and taurine, and *O*-unprotected D-glucopyranosyl and D-mannopyranosyl amines afforded the corresponding glycosyl or diglycosylthioureas 12a-i, 13band 13d in moderate to high yields. Similarly, the bolaamphiphiles^{37,†} 12j and 12k were obtained from 6/9 and 1,6or 1,12-diamino alkanes, respectively. Thioureas derived from *p*-tolyl, *n*-butyl, *n*-octyl, diethyl amines and piperidine were purified by silica gel column chromatography, whereas the more polar thioureas were isolated by gel filtration chromatography.

The widely used methodology for the synthesis of glycosyl thioureas involves the coupling of *O*-acylated glycosyl isothiocyanates with amines or aminosugars followed by Zemplen deacetylation.^{2,5} However, this reaction has been

found to be occasionally unsuccessful or low yielding.² In addition, an unexpected base-catalysed anomerization reaction for α and β -D-mannopyranosyl thioureido derivatives has been described upon Zemplen deacetylation.³⁸ This result contrasts with the preparation of **12i**, which did not show anomerization.

Structures **12** and **13** were supported by analytical and spectroscopic data (Table 2). The chemical shift for the resonance of the C=S group was 180-183 ppm, a value close to that described for *O*-protected acyclic⁴ and cyclic¹⁴ glycosylthioureas. The anomeric proton of the D-gluco (**12a**-**k**) and D-galactopyranosyl thioureas **13** resonated in the range 5.0-5.7 ppm, whereas the signal for the corresponding carbon (C-1) was in the range 83–87 ppm in accordance with the presence of a non-strained glycopyranosyl ring in the ⁴C₁ conformation;³⁹ this conclusion is also supported on the values of the vicinal coupling constants.

The one-pot three-step treatment of β -D-glucopyranosylamine **3** successively with thiophosgene (1:1 water/dioxane buffered with NaHCO₃/CO₂), then with an amine (*p*-tolyl, *n*-butyl, *n*-octyl, diethylamine, piperidine, 1,6-diaminohexane, benzylamino, and 6-amino-6-deoxy-1,2:3,4-di-*O*isopropylidene- α -D-galactopyranose,⁴⁰) and finally with yellow mercury (II) oxide (3 equiv., 1–3 h, rt), yielded the cyclic isourea derivatives **14** (Table 3) in good yields, 50– 70% for the three steps (Scheme 1). The trehazolin analogue

^b In D₂O.

A bolaamphiphile is defined as a molecule in which two or more hydrophilic groups are connected by one or more hydrophobic chains.

Entry	R	ноно	
		Yield (%) ^a	Nield (%) ^b
1	N CH2	14a , 69	94
2	K K K K K K K K K K K K K K K K K K K	14b , 67	_
3	^c rown N N N N N N N N N N N N N N N N N N N	14c , 50	75
4	solver N	14d , 70	_
5	N N N N N N N N N N N N N N N N N N N	14e , 47	_
6	H HO C C C C C C C C C C C C C C C C C C C	14h, —	89
7	H H N C OH N O OH OH OH	1 4j , 58	_
8	H H	141 , 57	_
9	Me NH Me O Me	14m, 59	_

Table 3. Synthesis of cyclic isoureas 14 from β -D-glucopyranosylamine 3 or from β -D-glucopyranosyl thioureas 12

14h was prepared in a 89% yield starting from the isolated symmetrical N,N'-bis(β -D-glucopyranosyl) thiourea **12h** by treatment with mercury (II) oxide in 1:1 water/dioxane at rt. Similarly, the *p*-tolyl **14a**, *n*-octyl **14c** derivatives were also obtained from the corresponding isolated thioureas (**12a** and

12c, respectively) in a 94 and 75% yield using methanol as solvent. Synthesis of **14h** by hydrogenolysis of the derivative of **14h** tetra-*O*-benzylated in the glucopyranose unit has previously been reported by Shiozaki.⁴¹ The reported hydrogenolysis with Pd(OH)₂-on-charcoal gave

^a Isolated yields from **3**.

^b Isolated yields from 12.

Ó. López et al. / Tetrahedron 60 (2004) 61-72

Scheme 2. Proposed mechanism for the transformation of *N*,*N*-dialkylisoureas into ureas.

an inseparable mixture of **14h** (17%) and N,N'-bis(β -D-glucopyranosyl)urea (32%).

The isourea derivatives **14** were purified by column chromatography on silica gel, except bolaamphiphile **14j** that was crystallized from ethanol. Attempts to prepare more polar bicyclic isoureas using glycine or taurine as amino compounds were unsuccessful as extensive decomposition took place during the purification by gel filtration chromatography, although the NMR spectra showed the expected isoureas as the major compounds.

Previous results showed that isolated partially *O*-protected sugar thioureas could be cyclodesulfurated to give cyclic isoureas, using freshly prepared dried mercury oxide^{42,43} in dried solvents, such as THF,⁴³ MeCN,⁴⁴ Et₂O/Me₂CO,⁴⁵ EtOH/Me₂CO⁴² or using 2-chloro-3-ethylbenzoxazolium tetrafluoroborate in dried MeCN under nitrogen.⁴¹ Our method is experimentally easier as it does not require the isolation of thioureas, and commercial yellow HgO in aqueous dioxane can be used.

The NMR spectra of cyclic isoureas 14 (Table 2) showed significant downfield shifts in the signals of the resonances of C-1 ($\Delta\delta \sim 10$ ppm) and C-2 ($\Delta\delta \sim 13$ ppm) whereas the resonances for H-1 had a shielding of 0.5-1 ppm, when they were compared with the corresponding signals for the parent thioureas. The $J_{1,2}$ value for 14a - m was 9.5–9.9 Hz, higher than this value for thioureas 12a - k (8.5–9.0 Hz); this might indicate that the pyranoid ring in the trans-fused bicyclic compounds is more puckered than that ring in the glycopyranosyl thioureas. Similar behaviour can be observed comparing the trans-fused bicyclic thiocarbamates 9 and 10 $(J_{1,2}=9.6, 10.0 \text{ Hz}, \text{ respectively})$ with the isothiocyanates **6** and 7 ($J_{1,2}$ =8.2, 8.0 Hz, respectively). The chemical shift for the isourea quaternary carbon atom in 14a-m was 160-166 ppm, a value in agreement with that reported for trehazolin and other isourea derivatives.44

In situ treatment of crude N,N-diethyl thiourea **12d** with 3.0 equiv. of yellow HgO for 2 h at rt gave **14d** (70% yield from **3**) together with the glucopyranosyl urea **15d** (18% yield), which was also obtained from **3** using 6.0 equiv of

HgO for 4 h (3.0 equiv. each 2 h) in the cyclodesulfurization step (85% yield for the four steps). Under the same conditions piperidine-derived isourea **14e** was not transformed into the corresponding urea. This transformation was achieved in low yield (33%) after 3 months using water as solvent. Attempts at similar transformations involving *N'*-monosubstituted isoureas **14a** and **14b** were unsuccessful, as no evolution from the corresponding isoureas was observed. Relevant NMR data of ureas **15** are included in **Table 2**. The presence of the urea functional group was confirmed by the characteristic ¹³C resonance of the carbonyl group (δ 158–159 ppm).⁴⁶

A carbodiimide has been proposed⁴⁷ as intermediate in the transformation of thioureas into isourea derivatives; O-protected N-glycosyl thioureas have been desulfurated with HgO in CHCl₃/water to give glycopyranosyl carbodiimides,⁴⁸ and desulfuration of sugar derived thioureas with HgO in MeCN/water to give ureas has been reported.^{25d} We suggest that the isourea derivatives 14 might be formed via cation 16 (Scheme 2), which undergoes the nucleophilic attack of the trans OH-2 to give the isourea derivatives 14, faster than the attack of H_2O to give ureas 15. In the case of N,N-disubstituted thioureas, the positive charge of 16 is stabilized by the two alkyl groups on the nitrogen atom, which provokes the formation of isoureas 14d and 14e to be reversible. The attack of H₂O on 16 produces glucosyl ureas **15d**-e in an irreversible way. The change from sp³ hybridized piperidine nitrogen atom to sp² for the transformation of 14e into the intermediate cation 16e implies a disfavoured strain energy change compared with the acyclic N,N-diethyl analogues,³⁵ which might be responsible for the slow formation of urea 15e.

No presence of the tautomeric tetrahydrooxazole structure **17** was detected by NMR for isoureas **14** in solution, the 2-amino-2-oxazoline **14** being the only possible tautomer for isoureas **14d** and **14e**. As the chemical shifts and coupling constants exhibited by isoureas **14a**-m are very close to each other, we can conclude that all of them exist in the 2-amino-2-oxazoline form.

In conclusion, we report expeditious one-pot synthesis in a

66

buffered aqueous medium of *O*-unprotected glycosyl thioureas (two steps) and dihydroglucopyranoso[1,2-*d*] oxazoles (three steps) starting from easily available β -D-glycopyranosylamines. The *N/O* protection–deprotection steps of other described methods to prepare glycosylthioureas, thioureylene oligosaccharides² and bolaamphi-philes⁴⁹ are avoided. In the case of bicyclic isourea derivatives, not only are the protection–deprotection steps avoided but also we prove that the cyclodesulfuration of the glycosyl thiourea with yellow HgO can be carried out in aqueous media.

3. Experimental

3.1. General procedures

Melting points were recorded on an Electrothermal apparatus and are uncorrected, optical rotations were measured with a Perkin-Elmer 241 polarimeter, and IR spectra (KBr disks) were obtained with an FT-IR Bomem MB-120 spectrophotometer. ¹H (300 and 500 MHz) and ¹³C (75.5 and 125.7 MHz) NMR spectra were recorded on Bruker AMX-300 and AMX-500 spectrometers. The assignments of ¹H and ¹³C signals were confirmed by homonuclear COSY and heteronuclear 2D correlated spectra, respectively. Mass spectra were recorded on Kratos MS 80 RFA and Micromass AutoSpeQ mass spectrometers. TLC was performed on aluminium pre-coated sheets (E. Merck Silica Gel 60 F_{254}); spots were visualized by UV light, by charring with 10% H₂SO₄ in EtOH. Column chromatography was performed using E. Merck Silica Gel 60 (40–63 μ m). Microanalysis were performed at the 'Instituto de Investigaciones Químicas', Seville, Spain.

3.1.1. β -D-Glucopyranosyl isothiocyanate (6) and (1,2dideoxy-β-D-glucopyranoso)[1,2-d]-1,3-oxazolidine-2thione (9). To a suspension of NaHCO₃ (281 mg, 3.35 mmol) in 1:1 H₂O/dioxane (5 mL) saturated with CO₂ was added β-D-glucopyranosylamine (250 mg, 1.40 mmol) and thiophosgene (0.13 mL, 1.68 mmol; 1.2 equiv.). The mixture was stirred at -10 °C for 40 min and then it was concentrated to dryness. The residue was dissolved in H₂O (25 mL) and washed with CH_2Cl_2 (3×25 mL). The aqueous layer was concentrated to dryness and the residue was triturated with EtOH and the ethanolic solution was concentrated to dryness and purified by column chromatography (5:1 CH₂Cl₂/MeOH) to give a mixture of 6 and 9 $(3:2 \text{ ratio in } D_2 O)$ together with a small amount of unknown products (198 mg, 64%). $R_f=0.39$ for both compounds (5:1 CH₂Cl₂/MeOH); IR: v_{max} 3335, 2027, 1750, 1520, 1364, 1250 cm^{-1} ; ¹H NMR (500 MHz, D₂O) compound 6: Table 2 and δ 3.85 (dd, 1H, $J_{5,6a}$ =2.3 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.69 (dd, 1H, $J_{5.6b}$ =5.6 Hz, H-6b), 3.48 (m, 2H, $J_{2,3}=8.2$ Hz, $J_{3,4}=8.8$ Hz, $J_{4,5}=8.8$ Hz, H-3, H-5), 3.39 (dd, 1H, H-4); compound 9: Table 2 and δ 4.07–4.09 (m, 2H, H-2, H-3), 3.89 (dd, 1H, J_{5.6a}=2.4 Hz, J_{6a.6b}=12.5 Hz, H-6a), 3.76 (dd, 1H, J_{5.6b}=5.5 Hz, H-6b), 3.66 (ddd, 1H, $J_{4,5}$ =8.8 Hz, H-5), 3.50 (dd, 1H, H-4); ¹³C NMR (127.5 MHz, D_2O) compound 6: Table 2 and δ 79.2 (C-5), 76.8 (C-3), 70.3 (C-4), 61.6 (C-6); compound 9: Table 2 and δ 82.2 (C-5), 75.4 (C-4) 74.0 (C-3), 61.6 (C-6); EI-MS m/z 221 ([M]⁺, 100%); HREI-MS, m/z calcd for [M]⁺ C₇H₁₁NO₅S: 221.0358, found: 221.0356.

3.1.2. β -D-Galactopyranosyl isothiocyanate (7) and (1,2dideoxy-β-D-galactopyranoso)[1,2-d]-1,3-oxazolidine-2thione (10). A suspension of NaHCO₃ (281 mg, 3.35 mmol) in 1:1 H₂O/dioxane (5 mL) saturated with CO₂ containing β -D-galactopyranosilamine (250 mg, 1.40 mmol) was treated with thiophosgene (0.13 mL, 1.68 mmol; 1.2 equiv.) as described in Section 3.3.1 to give a mixture of 7 and 10 (1:1 ratio in D₂O) together with a small amount of unknown products (158 mg, 51%). R_f =0.33 for both compounds (5:1 CH₂Cl₂/MeOH); IR: ν_{max} 3368, 2060, 1647, 1364, 1115 cm⁻¹; ¹H NMR (500 MHz, D₂O) compound 7: Table 2 and δ 3.88 (d, 1H, $J_{3,4}$ =3.0 Hz, $J_{4,5}$ =~0.0 Hz, H-4), 3.70-3.65 (m, 3H, H-5, H-6a, H-6b), 3.59 (dd, 1H, $J_{2,3}$ =10.5 Hz, H-3); compound **10**: Table 2 and δ 4.21 (dd, 1H, $J_{2,3}$ =11.0 Hz, $J_{3,4}$ =3.5 Hz, H-3), 4.05 (dd, 1H, $J_{4,5}$ =1.0 Hz, H-4), 3.85 (ddd, 1H, $J_{5,6a}$ =7.0 Hz, $J_{5,6b}$ = 4.5 Hz, H-5), 3.80 (dd, 1H, $J_{6a,6b}$ =12.0 Hz, H-6a), 3.76 (dd, 1H, H-6b); ¹³C NMR (127.5 MHz, D₂O) compound 7: Table 2 and δ 79.6 (C-4), 78.5 (C-5), 73.6 (C-3), 62.0 (C-6); compound 10: Table 2 and δ 81.9 (C-5), 71.1 (C-3), 70.7 (C-4), 61.8 (C-6); CI-MS *m*/*z* 222 ([M+H]⁺, 100%); HRCI-MS m/z calcd for $[M+H]^+$ C₇H₁₂NO₅S: 222.0436, found: 222.0436.

3.2. General methods for the synthesis of β -D-glycopyranosyl thioureas 12 and 13

To a suspension of NaHCO₃ (281 mg, 3.35 mmol) in 1:1 $H_2O/dioxane$ (5 mL) saturated with CO₂ was added a β -D-glycopyranosilamine (250 mg, 1.40 mmol) and thiophosgene (0.13 mL, 1.68 mmol; 1.2 equiv.). The mixture was stirred at -10 °C for 40 min, then an amine (1.68 mmol, 1.2 equiv.) was added (in the case of α , ω -alkanediamines 0.84 mmol were used) and the mixture was stirred for 3–6 h at rt until TLC showed disappearance of the isothiocyanate **6**. The mixture was concentrated to dryness and the residue was purified by silica gel column chromatography, preparative TLC or by gel-filtration chromatography, as indicated in each case. The following compounds were prepared by this method.

3.2.1. N-(β -D-Glucopyranosyl)-N'-(p-methylphenyl) thiourea (12a). Purification by column chromatography $(CH_2Cl_2 \rightarrow 10:1 CH_2Cl_2/MeOH)$ gave **12a**: 301 mg, 66%. R_f=0.32 (5:1 CH₂Cl₂/MeOH); recrystallization from EtOH/ H₂O gave material which shrunk at 98-101 °C and melted at 132–136 °C (dec.); $[\alpha]_D^{25}$ –34° (c 1.0, H₂O); IR: ν_{max} 3445, 3327, 1586, 1522, 878, 820, 727 cm⁻¹; ¹H NMR (300 MHz, D_2O , 60 °C) Table 2 and δ 7.15–7.26 (m, 4H, Ar-H), 3.83 (dd, 1H, J_{5,6a}=2.3 Hz, J_{6a,6b}=12.4 Hz, H-6a), 3.67 (dd, 1H, $J_{5,6b}$ =5.2 Hz, H-6b), 3.49 (ddd, 1H, $J_{4,5}$ =9.7 Hz, H-5), 3.48 (t, 1H, $J_{2,3}$ =9.1 Hz, $J_{3,4}$ =9.0 Hz, H-3), 3.35 (t, 1H, H-4);¹³C NMR (75.5 MHz, D₂O, 60 °C) Table 2 and δ 138.8, 134.8, 130.6, 126.9 (Ar), 78.0 (C-5), 77.2 (C-3), 70.0 (C-4), 61.4 (C-6), 20,7 (CH₃); FAB-MS m/z 351 ($[M+Na]^+$, 100%). Anal. calcd for $C_{14}H_{20}N_2O_5$ -S·1/2H₂O: C, 49.84; H, 6.27; N, 8.30, found: C, 49.63; H, 6.33; N, 8.38.

3.2.2. *N*-Butyl-N'-(β -D-glucopyranosyl)thiourea (12b).

Purification by column chromatography (CH₂Cl₂ \rightarrow 10:1 CH₂Cl₂/MeOH) gave **12b**: 261 mg, 63%. R_f=0.23 (5:1 CH₂Cl₂/MeOH); crystallization from EtOH gave material which shrunk at 68-72 °C and melted at 102-104 °C (dec.) (from EtOH); $[\alpha]_D^{30} - 27^\circ (c \ 1.0, H_2O)$; IR: $\nu_{max} \ 3453, 2924$, 2872, 1692, 1562, 1352 cm⁻¹; ¹H NMR (300 MHz, D₂O, 60 °C) Table 2 and δ 3.84 (dd, 1H, $J_{5,6a}$ =2.2 Hz, J_{6a,6b}=12.4 Hz, H-6a), 3.68 (dd, 1H, J_{5,6b}=5.2 Hz, H-6b), 3.52 (t, 1H, J_{2,3}=8.9 Hz, J_{3,4}=8.9 Hz, H-3), 3.48 (ddd, 1H, $J_{4.5}=9.2$ Hz, H-5), 3.52–3.35 (m, 3H, H-2, CH₂), 3.38 (t, 1H, H-4), 1.54 (m, 2H, J=7.4 Hz, CH₂), 1.31 (m, 2H, CH₂), 0.86 (t, 3H, CH₃); ¹³C NMR (75.5 MHz, D₂O, 60 °C) Table 2 and 8 77.9 (C-5) 77.2 (C-3), 70.1 (C-4), 61.4 (C-6), 30.7 $(CH_2\beta)$, 19.9 $(CH_2\gamma)$, 13.5 (CH_3) ; FAB-MS m/z 317 $([M+Na]^+, 100\%)$. Anal. calcd for: $C_{11}H_{22}N_2O_5S\cdot 1/$ 2EtOH, C, 45.41; H, 7.94; N, 8.82, found: C, 45.55; H, 7.74; N, 8.80.

3.2.3. N-(β -D-Glucopyranosyl)-N'-octylthiourea (12c). Purification by column chromatography (CH₂Cl₂ \rightarrow 10:1 CH₂Cl₂/MeOH) gave 12c: 353 mg, 72%. $R_{\rm f}$ =0.20 (5:1 CH₂Cl₂/MeOH); mp 170-172 °C (dec.) from EtOH/H₂O; $[\alpha]_{\rm D}^{28} = 17^{\circ} (c \ 1.0, \text{MeOH}); \text{IR: } \nu_{\rm max} 3298, 2922, 2855, 1564,$ 1348, 1074 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆, 90 °C) Table 2 and δ 7.49 (d, 1H, $J_{NH,H-1}$ =8.2 Hz, NH), 7.42 (t, 1H, $J_{\rm NH,CH_2}$ =5.1 Hz, NH'), 4.64–4.55 (m, 3H, 3OH), 4.02 (m, 1H, OH-6), 3.65 (m, 1H, $J_{6a,6b}$ =11.6 Hz, H-6a), 3.56 (m, 1H, H-6b), 3.41 (m, 1H, J=6.9 Hz, CH₂α), 3.28 (t, 1H, J_{2.3}=8.4 Hz, J_{3.4}=8.4 Hz, H-3), 3.21-3.11 (m, 1H, H-5), 3.11 (t, 1H, J_{4.5}=8.8 Hz, H-4), 1.51 (m, 2H, CH₂β), 1.28 (m, 10H, 5CH₂), 0.86 (t, 3H, CH₃); ¹³C NMR (75.5 MHz, DMSO-*d*₆, 90 °C) Table 2 and δ 77.5 (C-5), 77.2 (C-3), 72.5 (C-4), 60.9 (C-6), 30.7, 28.2, 28.1, 28.0, 25.9, 21.5, 13.2 (n-octyl); FAB-MS m/z 373 ([M+Na]⁺, 100%). Anal. calcd for: C₁₅H₃₂N₂O₆S·H₂O: C, 48.89; H, 8.75; N, 7.60, found: C, 49.08; H, 8.61; N, 7.69.

3.2.4. *N*,*N*-Diethyl-*N'*-(β -D-glucopyranosyl)thiourea (12d). Purification by preparative TLC (5:1 CH₂Cl₂/ MeOH, 2 elutions) gave 12d: 255 mg, 62% as an amorphous solid. $R_{\rm f}$ =0.23 (5:1 CH₂Cl₂/MeOH); $[\alpha]_{\rm D}^{25}$ -8.5° (c 1.2, H₂O); IR: ν_{max} 3441, 2932, 1533, 1354, 1279, 1071 cm⁻¹; ¹H NMR (500 MHz, D₂O) Table 2 and δ 3.87 (dd, 1H, $J_{5,6a}$ =2.2 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.76-3.63 (m, 4H, J=7.0 Hz, 2CH₂), 3.72 (dd, 1H, $J_{5,6b}=5.2$ Hz, H-6b), 3.55 (t, 1H, $J_{2,3}=9.0$ Hz, $J_{3,4}=9.0$ Hz, H-3), 3.51 (ddd, 1H, $J_{4,5}=9.6$ Hz, H-5), 3.41 (dd, 1H, H-4), 1.18 (t, 6H, 2CH₃); ^{13}C NMR (125.7 MHz, D₂O) Table 2 and δ 78.6 (C-5), 78.1 (C-3), 70.6 (C-4), 61.9 (C-6), 12.8 (2CH₃); CI-MS *m/z* 295 $([M+H]^+, 1\%);$ HRCI-MS: m/z calcd for $[M+H]^+$ C₁₁H₂₃N₂O₅S: 295.1328, found: 295.1329. Anal. calcd for C11H22N2O5S·H2O: C, 49.29; H, 7.74; N, 8.97, found: C, 42.40; H, 7.74; N, 9.26.

3.2.5. *N*-[(β-D-Glucopyranosyl)thiocarbamoyl]piperidine (12e). Purification by column chromatography (CH₂Cl₂→5:1 CH₂Cl₂/MeOH) gave 12e: 344 mg, 80% as a syrup. $R_{\rm f}$ =0.25 (5:1 CH₂Cl₂/MeOH); $[\alpha]_{\rm D}^{26}$ -34° (*c* 1.0, H₂O); IR: $\nu_{\rm max}$ 3368, 2930, 2864, 1755, 1564, 1439, 1329, 1252, 1080, 1040, 880 cm⁻¹; ¹H NMR (500 MHz, D₂O) Table 2 and δ 3.84 (dd, 1H, $J_{5,6a}$ =2.0 Hz, $J_{6a,6b}$ =12.5 Hz, H-6a), 3.81 (m, 4H, 2CH₂), 3.70 (dd, 1H, $J_{5,6b}$ =5.0 Hz, H-6b), 3.51 (m, 1H, $J_{3,4}$ =9.0 Hz, H-3), 3.45 (m, 1H,

 $J_{4,5}$ =9.3 Hz, H-5), 3.38 (t, 1H, H-4), 1.64 (m, 2H, CH₂), 1.57 (m, 4H, 2CH₂); ¹³C NMR (125.7 MHz, D₂O) Table 2 and δ 78.6 (C-5), 77.9 (C-3), 70.6 (C-4), 61.9 (C-6), 26.5, 24.9 (CH₂). EI-MS *m*/*z* 306 ([M]⁺, 3%); HREI-MS *m*/*z* calcd for [M]⁺ C₁₂H₂₃N₂O₅S: 306.1294, found: 306.1246.

3.2.6. Sodium [3-(β-D-glucopyranosyl)thioureido]acetate (12f). Purification by gel filtration chromatography gave 12f: 330 mg, 74% as a syrup. R_f =0.23 (3:2:1 EtOAc/ EtOH/H₂O; [α]_D²⁴ -32° (*c* 0.7, H₂O); IR: ν_{max} 3362, 1649, 1541, 1516, 1366, 1127, 1013, 629 cm⁻¹; ¹H NMR (300 MHz, D₂O, 60 °C) Table 2 and δ 4.06 (m, 2H, CH₂), 3.88 (dd, 1H, $J_{5,6a}$ =2.2 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.72 (dd, 1H, $J_{5,6b}$ =5.0 Hz, H-6b), 3.57 (t, 1H, $J_{2,3}$ =8.9 Hz, $J_{3,4}$ =8.9 Hz, H-3), 3.53 (ddd, $J_{4,5}$ =9.4 Hz, H-5), 3.43(t, 1H, H-4); ¹³C NMR (127.5 MHz, D₂O) Table 2 and δ 177.4 (C=O), 78.0 (C-5), 77.3 (C-3), 70.1 (C-4), 61.4 (C-6); FAB-MS *m*/z 341 ([M+Na]⁺, 23%); HRFABMS *m*/z calcd for [M+Na]⁺ C₉H₁₅N₂Na₂O₇S: 341.0395, found: 341.0399.

3.2.7. Sodium 2-[3-(β-D-glucopyranosyl)thioureido]ethane sulfonate (12g). Purification by gel filtration chromatography gave 12g: 371 mg, 72% as a syrup. R_f =0.24 (3:2:1 EtOAc/EtOH/H₂O); $[\alpha]_D^{28}$ -23° (*c* 1.4, H₂O); IR: ν_{max} 3298, 3050, 2922, 1655, 1566, 1437, 1362, 1165, 1040, 991 cm⁻¹; ¹H NMR (300 MHz, D₂O, 60 °C) Table 2 and δ 3.95 (m, 2H, *J*=6.5 Hz, CH₂N), 3.91 (dd, 1H, *J*_{5,6a}=2.3 Hz, *J*_{6a,6b}= 12.4 Hz, H-6a), 3.75 (dd, 1H, *J*_{5,6b}=5.2 Hz, H-6b), 3.58 (t, 1H, *J*_{2.3}=9.0 Hz, *J*_{3.4}=8.9 Hz, H-3), 3.56 (ddd, 1H, *J*_{4,5}=9.5 Hz, H-5), 3.45 (t, 1H, H-4), 3.21 (t, 2H, CH₂S); ¹³C NMR (75.5 MHz, D₂O) Table 2 and δ 78.1 (C-5), 77.3 (C-3), 70.1 (C-4), 61.4 (C-6), 50.2 (CH₂S); FAB-MS *m/z* 391 ([M+Na]⁺, 100%), 759 ([2M+Na]⁺, 13%); HRFAB-MS *m/z* calcd for [M+Na]⁺ C₉H₁₇N₂Na₂O₈S₂: 391.0222, found: 391.0227.

3.2.8. *N*,*N*'-**Bis**(**β**-**D**-glucopyranosyl)thiourea (12h). Purification by gel filtration chromatography gave **12h**: 294 mg, 53% as a syrup. $R_{\rm f}$ =0.38 (3:2:1 EtOAc/EtOH/H₂O); $[\alpha]_{\rm f}^{24}$ -32° (*c* 0.7, H₂O); IR: $\nu_{\rm max}$ 3318, 2899, 1545, 1424, 1364, 1101, 1072 cm⁻¹; ¹H NMR (300 MHz, D₂O) Table 2 and δ 3.84 (dd, 1H, $J_{5,6a}$ =2.1 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.69 (dd, 1H, $J_{5,6b}$ =5.2 Hz, H-6b), 3.53 (t, 1H, $J_{2,3}$ =9.0 Hz, $J_{3,4}$ = 9.0 Hz, H-3), 3.52 (ddd, 1H, $J_{4,5}$ =9.6 Hz, H-5), 3.44 (t, 1H, H-4); ¹³C NMR (75.5 MHz, D₂O) Table 2 and δ 77.5 (C-5), 76.6 (C-3), 69.4 (C-4), 60.7 (C-6); FAB-MS *m/z* 401 ([M+H]⁺, 16%), 423 ([M+Na]⁺, 4%); HRFAB-MS *m/z* calcd for [M+H]⁺ C₁₃H₂₄N₂O₁₀S: 401.1230, found: 401.1232.

3.2.9. *N*-(β-D-Glucopyranosyl)-*N'*-(β-D-mannopyranosyl)thiourea (12i). Purification by gel filtration chromatography gave 12i: 405 mg, 73% as a syrup; R_f =0.30 (3:2:1 EtOAc/EtOH/H₂O) [α]²¹_D-24° (*c* 0.5, H₂O); IR: ν_{max} 3380, 2888, 1647, 1541, 1416, 1358, 1099, 1072, 1024, 891 cm⁻¹; ¹H NMR (300 MHz, D₂O, 60 °C) Table 2 and δ 5.66 (bs, 1H, H-1'), 4.04 (dd, 1H, $J_{1',2'}$ =1.2 Hz, $J_{2',3'}$ =3.3 Hz, H-2'), 3.93 (dd, 1H, $J_{5',6a'}$ =2.2 Hz, $J_{6a,6b'}$ =12.3 Hz, H-6a'), 3.89 (dd, 1H, $J_{5,6a}$ =2.2 Hz, $J_{6a,6b}$ =12.3 Hz, H-6a), 3.75 (dd, 1H, $J_{5,6a}$ =5.2 Hz, H-6b), 3.75 (dd, 1H, $J_{5',6a'}$ =5.2 Hz, H-6b), 3.75 (dd, 1H, $J_{5',6a'}$ =9.6 Hz, H-3'), 3.64 (t, 1H, $J_{4',5'}$ =9.6 Hz, H-4'), 3.60 (m, 1H, $J_{3,4}$ =9.0 Hz, H-3), 3.57–3.47 (m, 2H, H-5, H-5'), 3.48 (t, 1H, $J_{2,3}$ =9.0 Hz, H-2), 3.45 (t, 1H,

 $J_{3,4}=9.0 \text{ Hz}, J_{4,5}=9.7 \text{ Hz}, \text{H-4}); {}^{13}\text{C} \text{ NMR} (75.5 \text{ MHz}, \text{D}_2\text{O}, 60 °\text{C}) \text{ Table 2 and } \delta 78.1, 78.0 (\text{C-5}, \text{C-5}'), 77.1 (\text{C-3}), 73.9 (\text{C-3}'), 70.7 (\text{C-2}'), 70.0 (\text{C-4}), 67.2 (\text{C-4}'), 61.6, 61.3 (\text{C-6}, \text{C-6}'); \text{FAB-MS } m/z \text{ 401 ([M+H]}^+, 43\%), 423 ([M+Na]^+, 76\%); \text{ HRFAB-MS } m/z \text{ calcd for } [M+Na]^+ \text{ C}_{13}\text{H}_{23}\text{N}_2\text{-} \text{NaO}_{10}\text{S}: 423.1049, \text{ found: } 423.1046.$

3.2.10. 1,6-Bis[3-(β-D-glucopyranosyl)thioureido]hexane (**12j**). Purification by gel filtration chromatography gave **12j**: 325 mg, 84% as a syrup. R_f =0.45 (3:2:1 EtOAc/EtOH/ H₂O); $[\alpha]_D^{20} - 15^\circ$ (*c* 1.0, H₂O); IR: ν_{max} 3295, 2932, 1691, 1660, 1541, 1364, 1103, 1024, 874 cm⁻¹; ¹H NMR (300 MHz, D₂O, 60 °C) Table 2 and δ 3.88 (dd, 1H, $J_{5,6a}$ =1.9 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.72 (dd, 1H, $J_{5,6b}$ =5.2 Hz, H-6b), 3.56 (t, 1H, $J_{2,3}$ =8.9 Hz, $J_{3,4}$ =8.9 Hz, H-3), 3.53 (ddd, 1H, $J_{4,5}$ =9.2 Hz, H-5), 3.51 (m, 2H, CH₂) 3.45 (t, 1H, H-4), 1.60 (m, 2H, CH₂), 1.36 (m, 2H, CH₂); ¹³C NMR (75.5 MHz, D₂O, 60 °C) Table 2 and δ 77.8 (C-5), 77.2 (C-3), 70.1 (C-4), 61.4 (C-6), 28.4 (CH₂β), 26.1 (CH₂γ); FAB-MS *m*/*z* 581 ([M+Na]⁺, 21%); HRFAB-MS *m*/*z* calcd for [M+Na]⁺ C₂₀H₃₈N₂NaO₁₀S₂: 581.1927, found: 581.1918.

3.2.11. 1,12-Bis[3-(β-D-glucopyranosyl)thioureido]dodecane (12k). Purification by gel filtration chromatography gave **12k**: 345 mg, 77% as a syrup. R_f =0.69 (3:2:1 EtOAc/ EtOH/H₂O); $[\alpha]_D^{27}$ +13° (*c* 0.6, DMSO); IR: ν_{max} 3308, 2915, 1689, 1622, 1520, 1456, 1370, 1105, 1024, 872 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆, 90 °C) Table 2 and δ 7.43 (d, 1H, $J_{NH,H-1}$ =8.2 Hz, NH), 7.37 (t, 1H, J_{NH,CH_2} =5.0 Hz, NH'), 4.62–4.50 (m, 3H, 3OH), 3.99 (m, 1H, OH-6), 3.66 (m, 1H, $J_{2,3}$ =8.5 Hz, $J_{6a,6b}$ =11.6 Hz, H-6a), 3.47 (m, 1H, $J_{5,6b}$ =4.8 Hz, H-6b), 3.42 (q, 2H, $J_{H,H}$ =7.0 Hz, CH₂), 3.25 (t, 1H, $J_{2,3}$ =8.5 Hz, $J_{3,4}$ =8.5 Hz, H-3), 3.20 (ddd, 1H, $J_{4,5}$ =9.2 Hz, H-5), 3.14 (t, 1H, H-4), 1.51 (m, 2H, CH₂), 1.28 (m, 8H, 4CH₂); ¹³C NMR (75.5 MHz, DMSO-*d*₆, 90 °C) Table 2 and δ 77.4 (C-5), 77.2 (C-3), 70.1 (C-4), 60.8 (C-6), 28.4, 28.2, 28.1, 25.9 (CH₂, dodecane); FAB-MS *m*/*z* 665 ([M+Na]⁺, 100%); HRFAB-MS *m*/*z* calcd for [M+Na]⁺ C₂₆H₅₀N₄NaO₁₀S₂: 665.2866, found: 665.2869.

3.2.12. *N*-Butyl-*N*'-(β-D-galactopyranosyl)thiourea (13b). Purification by column chromatography (CH₂Cl₂→10:1 CH₂Cl₂/MeOH) gave **13b**: 218 mg, 53% as a syrup. R_f =0.51. (5:1 CH₂Cl₂/MeOH); [α]_D²⁴ -1° (*c* 1.1, H₂O); IR: ν_{max} 3331, 2932, 1647, 1557, 1360, 1032 cm⁻¹; ¹H NMR (500 MHz, D₂O) Table 2 and δ 3.94 (m, 1H, $J_{4,5}$ =~0.0 Hz, H-4), 3.75-3.61 (m, 5H, H-2, H-3, H-5, H-6a, H-6b), 3.51 (m, 2H, CH₂), 1.54 (m, 2H, CH₂), 1.31 (m, 2H, CH₂), 0.87 (t, 3H, *J*=7.3 Hz, CH₃); ¹³C NMR (125.7 MHz, D₂O) Table 2 and δ 77.5 (C-5), 74.6 (C-3), 69.9 (C-4), 62.2 (C-6), 31.4 (CH₂), 20.6 (CH₂), 14.2 (CH₃); FAB-MS *m*/*z* 295 ([M+H]⁺, 52%), 317 ([M+Na]⁺, 100%); HRFAB-MS *m*/*z* calcd for [M+H]⁺: 295.1328, found: 295.1326.

3.2.13. *N*,*N*-Diethyl-*N'*-(β-D-galactopyranosyl)thiourea (13d). Purification column chromatography (CH₂Cl₂→10:1 CH₂Cl₂/MeOH) gave 13d: 282 mg, 69% as an amorphous solid. $R_{\rm f}$ =0.51 (5:1 CH₂Cl₂/MeOH); $[\alpha]_{\rm D}^{28}$ +15° (*c* 0.5, H₂O); IR: $\nu_{\rm max}$ 3324, 2974, 1543, 1424, 1354, 1279, 1121 cm⁻¹; ¹H NMR (500 MHz, D₂O) Table 2 and δ 3.96 (m, 1H, $J_{4,5}$ =~0.0 Hz, H-4), 3.70 (m, 4H, $J_{2,3}$ =9.8 Hz,

 $J_{3,4}$ =2.6 Hz, H-3, H-5, H-6a, H-6b), 3.69 (m, 4H, *J*=7.1 Hz, 2CH₂), 1.17 (t, 6H, 2CH₃); ¹³C NMR (125.7 MHz, D₂O) Table 2 and δ 77.6 (C-5), 74.9 (C-3), 70.0 (C-4), 62.2 (C-6), 12.7 (2CH₃); FAB-MS *m*/*z* 295 ([M+H]⁺, 38%), 317 ([M+Na]⁺, 100%); HRFAB-MS *m*/*z* calcd for [M+H]⁺ C₁₁H₂₂N₂O₅S: 295.1328, found: 295.1328.

3.3. General methods for the synthesis of cyclic isoureas 14

Method A. To a solution of the crude thiourea **12** prepared as described above starting from β -D-glucopyranosylamine (1.40 mmol) in 1:1 H₂O/dioxane (5 mL) was one-pot added yellow mercury oxide (II) (910 mg, 4.2 mmol, 3.0 equiv.). The mixture was stirred at rt for 1–4 h until TLC showed disappearance of the corresponding thiourea, and then it was filtered through a Celite pad. The filtrate was concentrated to dryness and purified by silica gel column chromatography, except for **14j**, that was crystallized from EtOH.

Method B. To a solution of a purified thiourea 12a,c (0.5 mmol) in MeOH (5 mL) was added yellow mercury oxide (II) (325 mg, 1.5 mmol, 3.0 equiv.). The mixture was stirred at rt for 6 h and then it was filtered through a Celite pad. The filtrate was concentrated to dryness and purified by silica gel column chromatography.

Method C. To a solution of **12h** (0.5 mmol) in 1:1 H₂O/ dioxane (5 mL) was added yellow mercury oxide (II) (325 mg, 1.5 mmol, 3.0 equiv.). The mixture was stirred at rt for 3 h and then it was filtered through a Celite pad. The filtrate was concentrated to dryness to give pure **14h**.

3.3.1. 4,5-Dihydro-2-*p*-tolylamino-(1,2-dideoxy- β -D-glucopyranoso)[1,2-*d*]-1,3-oxazole (14a). *Method A*. Column chromatography (CH₂Cl₂ \rightarrow 20:1 CH₂Cl₂/MeOH) gave 14a: 284 mg, 69% as a yellow solid.

Method B. Filtration through a Celite bed gave **14a**: 138 mg, 94%. $R_{\rm f}$ =0.80 (5:1 CH₂Cl₂/MeOH); $[\alpha]_{\rm D}^{22}$ +84° (*c* 1.0, DMSO); IR: $\nu_{\rm max}$ 3289, 3073, 1663, 1549, 1518, 1381, 1138, 1096, 1040, 937, 882, 820, 719 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) Table 2 and δ 7.22, 7.09 (m, 4H, Ar-H), 3.90 (dd, 1H, $J_{2,3}$ =10.5 Hz, $J_{3,4}$ =7.6 Hz, H-3), 3.89 (dd, 1H, $J_{6a,6b}$ =12.2 Hz, H-6a), 3.73 (dd, 1H, $J_{5,6b}$ =5.3 Hz, H-6b), 3.53 (m, 1H, H-5), 3.40 (dd, 1H, $J_{4,5}$ =9.6 Hz, H-4), 2.27 (s, 3H, CH₃); ¹³C NMR (75.5 MHz, CD₃OD) Table 2 and δ 133.9, 130.4, 121.1 (Ar), 83.1 (C-5), 75.6 (C-3), 73.6 (C-4), 62.7 (C-6), 20.8 (CH₃); CI-MS m/z 295 ([M+H]⁺, 46%); HRCI-MS m/z calcd for [M+H]⁺ C₁₄H₁₉N₂O₅: 295.1294, found: 295.1287.

3.3.2. 2-Butylamino-4,5-dihydro-(1,2-dideoxy-β-D-glucopyranoso)[1,2-*d***]-1,3-oxazole (14b).** *Method A***. Column chromatography (CH₂Cl₂→8:1 CH₂Cl₂/MeOH) gave 14b: 244 mg, 67% as a white solid. R_{\rm f}=0.48 (5:1 CH₂Cl₂/ MeOH); [\alpha]_{\rm D}^{25} +108° (***c* **0.39, DMSO); IR: \nu_{\rm max} 3439, 3277, 3090, 2955, 1667, 1592, 1435, 1352, 1289, 1244 cm⁻¹; ¹H NMR (300 MHz, D₂O) Table 2 and δ 3.96 (dd, 1H, J_{2,3}= 10.6 Hz, J_{3,4}=7.9 Hz, H-3), 3.86 (dd, 1H, J_{5,6a}=2.2 Hz, J_{6a,6b}=12.4 Hz, H-6a), 3.71 (dd, 1H, J_{5,6b}=5.6 Hz, H-6b), 3.59 (ddd, 1H, J_{4,5}=9.6 Hz, H-5), 3.39 (dd, 1H, H-4), 3.10 (t, 2H, J_{\rm H,H}=6.9 Hz, CH₂α), 1.46 (m, 2H, CH₂β),** 1.28 (m, 2H, CH₂ γ), 0.84 (t, 3H, CH₃); ¹³C NMR (75.5 MHz, D₂O) Table 2 and δ 81.1 (C-5), 73.7 (C-3), 71.8 (C-4), 61.0 (C-6), 30.7 (CH₂ β), 19.4 (CH₂ γ), 13.1 (CH₃); CI-MS *m*/*z* 261 ([M+H]⁺, 100%), 243 ([M+H-H₂O]⁺, 16%); HRCI-MS *m*/*z* calcd for [M+H]⁺ C₁₁H₂₀N₂O₅: 261.1449, found: 261.1450. Anal. calcd for C₁₁H₂₀N₂O₅: C, 50.76; H, 7.74; N, 10.76, found: C, 50.61; H, 7.94; N, 11.01.

3.3.3. 4,5-Dihydro-2-octylamino-(1,2-dideoxy-β-D-glucopyranoso)[**1,2-***d*]**-1,3-oxazole** (**14c**). *Method* A. Column chromatography (CH₂Cl₂ \rightarrow 10:1 CH₂Cl₂/MeOH) gave **4c**: 221 mg, 50% as a white solid.

Method B. Column chromatography (CH₂Cl₂→10:1 CH₂-Cl₂/MeOH) gave **14c**: 119 mg, 75%. R_f =0.36 (5:1 CH₂Cl₂/ MeOH); [α]_D²⁵+82° (*c* 0.83, DMSO); IR: ν_{max} 3312, 2924, 2855, 1651, 1539, 1456, 1373, 1101, 1038, 876 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) Table 2 and δ 3.86 (dd, 1H, $J_{5,6a}$ =2.6 Hz, $J_{6a,6b}$ =12.1 Hz, H-6a), 3.85 (t, 1H, $J_{2,3}$ = 9.8 Hz, $J_{3,4}$ =7.7 Hz, H-3), 3,72 (dd, 1H, $J_{5,6b}$ =5.2 Hz, H-6b), 3.48 (ddd, 1H, $J_{4,5}$ =9.6 Hz, H-5), 3.37 (dd, 1H, H-4), 3.14 (t, 2H, $J_{H,H}$ =7.0 Hz, CH₂), 1.54 (m, 2H, CH₂), 1.31 (m, 10H, 5CH₂), 0.90 (t, 3H, CH₃); ¹³C NMR (125.7 MHz, CD₃OD) Table 2 and δ 83.1 (C-5), 75.7 (C-3), 73.7 (C-4), 62.7 (C-6), 33.0, 30.5, 30.4, 30.4, 27.8, 23.7 (CH₂), 14.4 (CH₃); CI-MS m/z 299 ([M+H−H₂O]⁺, 35%), 317 ([M+H]⁺, 100%), 633 ([2M+H]⁺, 5%); HRCI-MS m/zcalcd for [M+H]⁺ C₁₅H₂₉N₂O₅: 317.2076, found: 317.2076.

3.3.4. 2-Diethylamino-4,5-dihydro-(1,2-dideoxy-B-Dglucopyranoso)[1,2-d]-1,3-oxazole (14d). Method A. Column chromatography (CH₂Cl₂ \rightarrow 3:1 CH₂Cl₂/MeOH) gave 14d (255 mg, 57%) and urea 15d (70 mg, 18%), which was identical with the product prepared in Section 3.3.10. Data for compound 14d: $R_f=0.69$ (5:1 CH₂Cl₂/MeOH); $[\alpha]_{D}^{25}$ +114° (*c* 0.56, DMSO); IR ν_{max} 3324, 2922, 2855, 1642, 1431, 1358, 1314, 1155, 1065, 876, 735 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) Table 2 and δ 3.85 (dd, 1H, $J_{5,6a}$ = 2.0 Hz, $J_{6a,6b}$ =12.0 Hz, H-6a), 3.86 (dd, 1H, $J_{2,3}$ =10.4 Hz, H-3), 3.71 (dd, 1H, $J_{5,6b}$ =5.2 Hz, H-6b), 3.49 (ddd, 1H, H-5), 3.33 (m, 5H, H-4, 2CH₂), 1.15 (1, 3H, $J_{\rm H,H}$ =7.1 Hz, CH₃); ¹³C NMR (75.5 MHz, CD₃OD) Table 2 and δ 83.1 (C-5), 75.8 (C-3), 73.7 (C-4), 62.8 (C-6), 13.7 $(2CH_3)$; CI-MS *m/z* 225 ([M+H-2H₂O]⁺, 3%), 243 ([M+H-H₂O]⁺, 14%), 261 ([M+H]⁺, 100%); HRCI-MS m/z calcd for $[M+H]^+$ C₁₁H₂₁N₂O₅: 261.1450, found: 261.1454.

3.3.5. 4,5-Dihydro-2-(piperidin-1-yl)-(1,2-dideoxy-β-D-glucopyranoso)[1,2-d]-1,3-oxazole (14e). *Method A*. Column chromatography (CH₂Cl₂ \rightarrow 3:1 CH₂Cl₂/MeOH) gave **14e**: 177 mg, 47% as a white solid. $R_{\rm f}$ =0.48 (5:1 CH₂Cl₂/MeOH); $[\alpha]_{\rm D}^{27}$ +107° (*c* 1.0, DMSO); IR: $\nu_{\rm max}$ 3376, 3330, 2936, 2855, 1645, 1443, 1356, 1167, 1047, 729 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) Table 2 and δ 3.86 (dd, $J_{2,3}$ =10.6 Hz, $J_{3,4}$ =7.7 Hz, H-3), 3.85 (dd, 1H, $J_{5,6a}$ = 2.3 Hz, $J_{6a,6b}$ =12.0 Hz, H-6a), 3.72 (dd, 1H, $J_{5,6b}$ =5.2 Hz, H-6b), 3.49 (m, 1H, $J_{4,5}$ =9.6 Hz, H-5), 3.36 (dd, 1H, H-4), 1.64 (m, 2H, CH₂), 1.57 (m, 4H, 2CH₂); ¹³C NMR (125.7 MHz, CD₃OD) Table 2 and δ 83.1 (C-5), 75.8 (C-3), 73.7 (C-4), 62.8 (C-6), 26.4, 25.1 (CH₂); CI-MS *m*/z

273 ([M+H]⁺, 100%); HRCI-MS m/z calcd for [M+H]⁺ C₁₂H₂₁N₂O₅: 273.1450, found: 273.1447.

3.3.6. 2-(B-D-Glucopyranosyl)amino-4,5-dihydro-(1,2dideoxy-β-D-glucopyranoso)[1,2-*d*]-1,3-oxazole (14h). *Method C.* Filtration through a Celite bed gave pure **14h**: 82 mg, 89% as a syrup. $R_f=0.25$ (3:2:1 EtOAc/EtOH/H₂O); $[\alpha] + 28^{\circ} (c \ 0.5, H_2O);$ IR ν_{max} 3306, 2918, 1651, 1559, 1364, 1125, 993 cm⁻¹; ¹H NMR (500 MHz, D₂O) Table 2 and δ 4.72 (d, 1H, $J_{1',2'}$ =8.9 Hz, H-1'), 4.04 (dd, 1H, $J_{2,3}$ = 10.6 Hz, $J_{3,4}$ =7.9 Hz, H-3), 3.89 (dd, 1H, $J_{5',6a'}$ =2.0 Hz, $J_{6a',6b'}=12.4$ Hz, H-6a'), 3.85 (dd, 1H, $J_{5,6a}=2.0$ Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.74 (dd, 1H, $J_{5,6b}$ =5.8 Hz, H-6b), 3.71 (t, 1H, H-2), 3.70 (dd, 1H, $J_{5' 6b'}$ =5.2 Hz, H-6b'), 3.64 (ddd, 1H, $J_{4.5}$ =9.6 Hz, H-5), 3.52 (t, 1H, $J_{2'.3'}$ =9.4 Hz, $J_{3',4'}=9.0$ Hz, H-3'), 3.47 (ddd, 1H, $J_{4',5'}=9.4$ Hz, H-5'), 3.43 (dd, 1H, H-4), 3.38 (t, 1H, H-2'), 3.35 (t, 1H, H-4'); ¹³C NMR (125.7 MHz, CD₃OD) Table 2 and δ 86.0 (C-2), 82.3 (C-5), 78.6 (C-5'), 77.6 (C-3'), 74.6 (C-2'), 73.3 (C-3), 72.8 (C-4), 70.4 (C-4'), 62.0, 61.7 (C-6, C-6'); FAB-MS m/z 389 $([M+Na]^+, 100\%);$ HRFAB-MS m/z calcd for $[M+Na]^+$ C₁₃H₂₂N₂NaO₁₀: 389.1172, found: 389.1185.

3.3.7. 1,6-Bis{4,5-dihydro-(1,2-dideoxy-β-D-glucopyranoso)[**1,2-***d***]-1,3-oxazol-2-ylamino}hexane (14j).** *Method A*. Crystallization from EtOH gave hygroscopic **14j**: 199 mg, 58%. $R_{\rm f}$ =0.22 (3:2:1 EtOAc/EtOH/H₂O); [α] +43° (*c* 1.0, H₂O); IR: $\nu_{\rm max}$ 3347, 2945, 2836, 1651, 1452, 1371, 1026, 712 cm⁻¹; ¹H NMR (300 MHz, D₂O) Table 2 and δ 3.97 (dd, 1H, $J_{2,3}$ =10.6 Hz, $J_{3,4}$ =7.9 Hz, H-3), 3.87 (dd, 1H, $J_{5,6a}$ =2.1 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.72 (dd, 1H, $J_{5,6b}$ =5.7 Hz, H-6b), 3.60 (ddd, 1H, $J_{4,5}$ =9.6 Hz, H-5), 3.40 (dd, 1H, H-4), 3.11 (t, 4H, $J_{\rm H,H}$ =6.8 Hz, 2CH₂), 1.49 (m, 4H, 2CH₂), 1.30 (m, 4H, 2CH₂); ¹³C NMR (75.5 MHz, D₂O) Table 2 and δ 81.6 (C-5), 74.2 (C-3), 72.3 (C-4), 61.5 (C-6), 29.0 (CH₂β), 26.2 (CH₂γ); FAB-MS 513 m/z ([M+Na]⁺, 17%); HRFAB-MS m/z calcd for [M+Na]⁺ C₂₀H₃₄N₄NaO₁₀: 513.2173, found: 513.2214.

3.3.8. 2-Bencylamino-4,5-dihydro-(1,2-dideoxy-β-D-glucopyranoso)[1,2-d]-1,3-oxazole (14l). Method A. Column chromatography (CH₂Cl₂ \rightarrow 3:1 CH₂Cl₂/MeOH) gave 141: 235 mg, 57% as a white solid. $R_{\rm f}$ =0.62 (5:1 CH₂Cl₂/ MeOH); $[\alpha]_D^{25}$ +73° (*c* 1.2, DMSO) IR: ν_{max} 3283, 1633, 1375, 1101, 1040, 874 cm⁻¹; ¹H NMR (300 MHz, DMSO d_6) Table 2 and δ 7.34–7.21 (m, 5H, Ar-H), 5.51, 5.29 (bs, 2H, 2OH), 4.65 (bs, 1H, OH-6), 4.22 (s, 2H, CH₂), 3.67 (dd, 1H, $J_{2,3}$ =10.2 Hz, $J_{3,4}$ =7.6 Hz, H-3), 3.64 (m, 1H, $J_{6a,6b}$ = 12.9 Hz, H-6a), 3.46 (m, 1H, H-6b), 3.29 (m, 1H, $J_{4.5}$ = 8.9 Hz, H-5), 3.15 (bt, H-4); ¹³C NMR (300 MHz, DMSOd₆) Table 2 and δ 139.8, 128.3, 127.2, 126.8 (Ar), 81.9 (C-5), 74.0 (C-3), 72.2 (C-4), 61.0 (C-6); CI-MS m/z 277 ([M+H-H₂O]⁺, 35%), 295 ([M+H]⁺, 100%); HRCI-MS m/z calcd for $[M+H]^+$ C₁₄H₁₉N₂O₅: 295.1294, found: 295.1289. Anal. calcd for C₁₄H₁₈N₂O₅·1/2H₂O: C, 55.44; H, 6.31; N, 9.24, found: C, 55.50; H, 5.98; N, 9.41.

3.3.9. 2-(6-Deoxy-1,2:3,4-di-*O*-isopropilidene-α-D-galactopyranos-6-yl)amino-4,5-dihydro-(1,2-dideoxy-β-D-glucopyranoso)[1,2-*d*]-1,3-oxazole (14m). *Method A*. Column chromatography (CH₂Cl₂→10:1 CH₂Cl₂/MeOH) gave 14m: 369 mg, 59% as a syrup. $R_{\rm f}$ =0.66 (5:1 CH₂Cl₂/ MeOH); [α] +50° (*c* 0.9, MeOH); IR: $\nu_{\rm max}$ 3312, 2928,

1661, 1373, 1101, 1067, 1005, 874 cm $^{-1}$; ¹H NMR (300 MHz, CD₃OD) Table 2 and δ 5.43 (d, 1H, $J_{1',2'}=5.0$ Hz, H-1'), 4.58 (dd, 1H, $J_{2',3'}=2.4$ Hz, $J_{3',4'}=7.9$ Hz, H-3'), 4.30 (dd, 1H, H-2'), 4.21 (dd, 1H, $J_{4',5'}=1.6$ Hz, H-4'), 3.97 (m, 1H, H-5'), 3.81 (dd, 1H, $J_{5.6a} = 2.2 \text{ Hz}, J_{6a.6b} = 12.1 \text{ Hz}, \text{ H-6a}), 3.80 \text{ (dd, 1H,}$ $J_{2,3}=10.6$ Hz, $J_{3,4}=7.6$ Hz, H-3), 3.66 (dd, 1H, $J_{5,6b}=$ 5.4 Hz, H-6b), 3.44 (m, 2H, H-2, H-5), 3.33 (dd, 1H, $J_{5',6a'}$ =4.0 Hz, $J_{6a',6b'}$ =13.8 Hz, H-6a'), 3.26 (dd, 1H, $J_{45}=9.6$ Hz, H-4), 3.22 (dd, 1H, $J_{5',6b'}=8.5$ Hz, H-6b'), 1.45, 1.36, 1.29, 1.28 (4s, 3H each, 4CH₃); ¹³C NMR (75.5 MHz, CD₃OD) Table 2 and δ 110.5, 110.0 (Me₂C), 83.2 (C-5), 75.7 (C-3), 73.7 (C-4), 72.7 (C-4'), 72.2 (C-3'), 71.9 (C-2'), 67.4 (C-5'), 62.9 (C-6), 43.9 (C-6'), 26.5, 26.3, 25.2, 24.5 (CH₃); CI-MS m/z 429 ([M+H-H₂O]⁺, 4%); FAB-MS *m*/*z* 469 ([M+Na]⁺, 100%), 447 ([M+H]⁺, 40%); HRFAB-MS m/z calcd for $[M+H]^+$ $C_{19}H_{31}N_2O_{10}$: 447.1979, found: 447.1969.

3.3.10. *N*,*N*-Diethyl-*N'*-(β -D-glucopyranosyl)urea (15d). To a solution of the crude thiourea 12d prepared as described above starting from β -D-glucopyranosylamine 3 (250 mg, 1.40 mmol) in 1:1 H₂O/dioxane (5 mL) was onepot added yellow mercury oxide (II) (910 mg, 4.2 mmol, 3.0 equiv.). The mixture was stirred at rt for 2 h and then an extra amount of yellow mercury oxide (II) (910 mg, 4.2 mmol, 3.0 equiv.) was added and the mixture was stirred for other 2 h. After that it was filtered through a Celite pad, the filtrate was concentrated to dryness and purified by silica gel column chromatography to give 15d (331 mg, 85% from 3) as a syrup. $R_f = 0.19$ (5:1 CH₂Cl₂/ MeOH); $[\alpha]_D^{24} + 5^\circ$ (*c* 1.0, MeOH); IR: ν_{max} 3266, 2947, 2839, 1663, 1543, 1449, 1103, 1022 cm⁻¹; ¹H NMR (300 MHz, D₂O) Table 2 and δ 3.84 (dd, 1H, $J_{5,6a}$ = 1.8 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 3.66 (dd, 1H, $J_{5,6b}$ =5.6 Hz, H-6b), 3.50 (t, 1H, J_{2.3}=9.2 Hz, J_{3.4}=9.2 Hz, H-3), 3.47 (ddd, 1H, J_{4.5}=9.7 Hz, H-5), 3.35 (t, 1H, H-4), 3.27 (m, 4H, 2CH₂), 1.08 (t, 6H, 2CH₃); ¹³C NMR (75.5 MHz; D₂O) Table 2 and δ 77.5 (C-5), 77.0 (C-3), 69.8 (C-4), 61.0 (C-6), 12.9 (CH₃); FAB-MS m/z 301 ([M+Na]⁺, 100%); HRFAB-MS m/z calcd for $[M+Na]^+$ $C_{11}H_{22}N_2NaO_6$ 301.1376, found: 301.1384.

3.3.11. *N*-[(β-D-Glucopyranosyl)carbamoyl]piperidine (15e). To a solution of the crude thiourea 12e prepared as described above starting from β -D-glucopyranosylamine (250 mg, 1.40 mmol) in 1:1 H₂O/dioxane (5 mL) was onepot added yellow mercury oxide (II) (910 mg, 4.2 mmol, 3.0 equiv.). The mixture was stirred at rt for 2 h and TLC showed disappearance of 12e and formation of isourea 14e. An extra amount of yellow mercury oxide (II) (910 mg, 4.2 mmol, 3.0 equiv.) was added, the mixture was stirred for 5 days, and TLC showed no appreciable formation of a new compound. The mixture was filtered through a Celite pad, the filtrate was concentrated to dryness and the residue was dissolved in water (5 mL). Mercury oxide (II) (910 mg, 4.2 mmol, 3.0 equiv.) was added and the mixture was kept at rt for 3 months. Conventional work-up and purification by silica gel column chromatography gave isourea 14e (52 mg, 14%) as the first eluted compound. Eluted second was 15e (134 mg, 33% from **3**), $R_{\rm f}$ =0.18 (5:1 CH₂Cl₂/MeOH); $[\alpha]_{\rm D}^{27}$ -20° (c 1.0, H₂O); IR: ν_{max} 3395, 2940, 1647, 1539, 1454, 1364, 1013 cm⁻¹; ¹H NMR (300 MHz, D₂O) Table 2 and δ 3.92 (dd, 1H, $J_{5,6a}$ =2.0 Hz, $J_{6a,6b}$ =12.3 Hz, H-6a), 3.75 (dd, 1H, $J_{5,6b}$ =5.6 Hz, H-6b), 3.58 (t, 1H, $J_{2,3}$ =9.2 Hz, $J_{3,4}$ =9.2 Hz, H-3), 3.54 (ddd, 1H, $J_{4,5}$ =9.9 Hz, H-5), 3.44 (m, 5H, H-4, 2CH₂), 1.66 (m, 2H, CH₂), 1.58 (m, 4H, 2CH₂); ¹³C NMR (75.5 MHz; D₂O) Table 2 and δ 78.4 (C-5), 77.9 (C-3), 70.7 (C-4), 62.0 (C-6), 26.4, 24.9 (CH₂); FAB-MS *m*/*z* 313 ([M+Na]⁺, 100%); HRCI-MS *m*/*z* calcd for [M+H]⁺ C₁₂H₂₃N₂O₆: 291.1556, found: 291.1567.

Acknowledgements

We thank the Dirección General de Enseñanza Superior e Investigación Científica (Grant BQU 2001-3740) and the Junta de Andalucia (FQM134) for financial support. O. López thanks the Ministerio de Educación y Cultura for the award of a fellowship.

References and notes

- 1. Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1-24.
- For a review, see: García Fernández, J. M.; Ortiz Mellet, C. Adv. Carbohydr. Chem. Biochem. 1999, 55, 35–135.
- (a) Fuentes, J.; Angulo, M.; Pradera, M. A. J. Org. Chem. 2002, 67, 2577–2587. (b) Fernández-Bolaños, J. G.; Zafra, E.; López, O.; Robina, I.; Fuentes, J. Tetrahedron: Asymmetry 1999, 10, 3011–3023.
- For glycosyl thioureas, see: (a) Todoulou, O. G.; Papadaki-Valiraki, A. E.; Filippatos, E. C.; Ikeda, S.; De Clercq, E. *Eur. J. Med. Chem.* **1994**, *29*, 127–131. (b) Povarov, L. S.; Potapova, N. P.; Bakina, E. V.; Preobrazhenskaya, M. N.; Rozynov, B. V. *Bioorg. Khim.* **1992**, *18*, 117–126. For thioureidosugars in non-glycosidic positions, see: (c) Fernández-Bolaños, J. G.; Zafra, E.; Robina, I.; Fuentes, J. *Carbohydr. Lett.* **1999**, *3*, 239–246. (d) Fuentes Mota, J.; Cuevas, T.; Pradera, M. A. *Carbohydr. Res.* **1994**, *260*, 137–144.
- Fuentes, J.; Molina, J. L.; Pradera, M. A. *Tetrahedron:* Asymmetry 1998, 9, 2517–2532, and references cited therein.
- (a) Taylor, C. M. *Tetrahedron* **1998**, *54*, 11317–11362. (b)
 Günther, W.; Kunz, H. *Angew. Chem., Int. Ed. Engl.* **1990**, *29*, 1050–1051.
- Gasch, C.; Pradera, M. A.; Salameh, B. A. B.; Molina, J. L.; Fuentes, J. *Tetrahedron: Asymmetry* 2001, *12*, 1267–1277.
- Gasch, C.; Salameh, B. A. B.; Pradera, M. A.; Fuentes, J. *Tetrahedron Lett.* 2001, 42, 8615–8617.
- (a) Dubber, M.; Lindhorst, T. K. Org. Lett. 2001, 3, 4019-4022.
 (b) Lindhorst, T. K.; Kieburg, C. Angew. Chem., Int. Ed. Engl. 1996, 35, 1953-1956.
- Saitz-Barrie, C.; Torres-Pinedo, A.; Santoyo González, F. Synlett 1999, 1891–1894.
- 11. Fischer, E. Ber. Dtsch. Chem. Ges. 1914, 47, 1377-1393.
- 12. Lindhorst, T. K.; Kieburg, C. Synthesis 1995, 1228-1230.
- Al-Masoudi, N.; Hassan, N. A.; Al-Soud, Y. A.; Schmidt, P.; Gaafar, A. E.-D. M.; Weng, M.; Marino, S.; Schoch, A.; Amer, A.; Jochims, J. C. J. Chem. Soc., Perkin Trans. 1 1998, 947–954.
- Fuentes, J.; Molina, J. L.; Olano, D.; Pradera, M. A. Tetrahedron: Asymmetry 1996, 7, 203–218.
- Santoyo-González, F.; García-Calvo-Flores, F.; Isac-García, J.; Hernández-Mateo, F.; García-Mendoza, P.; Robles-Díaz, R. *Tetrahedron* 1994, 50, 2877–2894.

- (a) Matoga, M.; Laborde-Kummer, E.; Langlois, M. H.; Dallet, P.; Bosc, J. J.; Jarry, C.; Dubost, J. P. *J. Chromatogr. A* **2003**, *984*, 253–260. (b) Wong, W. C.; Sun, W.; Cui, W.; Chen, Y.; Forray, C.; Vaysse, P. J.-J.; Branchek, T. A.; Gluchowski, C. *J. Med. Chem.* **2000**, *43*, 1699–1704. (c) Hirashima, A.; Rafaeli, A.; Gileadi, C.; Kuwano, E. Bioorg. Med. Chem. **1999**, *7*, 2621–2628.
- Bricca, G.; Dontenwill, M.; Molines, A.; Feldman, J.; Tibirica, E.; Belcourt, A.; Bousquet, P. *Eur. J. Pharmacol.* 1989, *163*, 373–377.
- Bosc, J. J.; Jarry, C.; Martinez, B.; Molimard, M. J. Pharm. Pharmacol. 2001, 53, 923–927.
- Bruban, V.; Feldman, J.; Greney, H.; Dontenwill, M.; Schann, S.; Jarry, C.; Payard, M.; Boutin, J.; Scalbert, E.; Pfeiffer, B.; Renard, P.; Vanhoutte, P.; Bousquet, P. *Br. J. Pharmacol.* 2001, *133*, 261–266.
- Tao, R.; Fray, A.; Aspley, S.; Brammer, R.; Heal, D.; Auerbach, S. *Eur. J. Pharmacol.* 2002, 445, 69–81.
- Hirashima, A.; Eiraku, T.; Watanabe, X.; Kuwano, E.; Taniguchi, E.; Eto, M. Pest. Manag. Sci. 2001, 57, 713–720.
- (a) Ando, O.; Satake, H.; Itoi, K.; Sato, A.; Nakajima, M.; Takahashi, S.; Haruyama, H.; Ohkuma, Y.; Kinoshita, T.; Enokita, R. J. Antibiot. 1991, 44, 1165–1168. (b) Nakayama, T.; Amachi, T.; Murao, S.; Sakai, T.; Shin, T.; Kenny, P. T.; Iwashita, T.; Zagorski, M.; Komura, H.; Nomoto, K. J. Chem. Soc., Chem. Commun. 1991, 919–921.
- Sakuda, S.; Isogai, A.; Matsumoto, S.; Suzuki, A. J. Antibiot. 1987, 40, 296–300.
- For reviews, see: (a) Berecibar, A.; Grandjean, C.; Siriwardena,
 A. Chem. Rev. 1999, 99, 779-844. (b) Kobayashi, Y. Carbohydr. Res. 1999, 315, 3-15.
- For recent syntheses of trehazolin and analogues, see: (a) Crimmins, M. T.; Tabet, E. A. J. Org. Chem. 2001, 66, 4012-4018. (b) Seepersaud, M.; Al-Abed, Y. Tetrahedron Lett. 2001, 42, 1471-1473. (c) McAllister, G. D.; Taylor, R. J. K. Tetrahedron Lett. 2001, 42, 1197-1200. (d) Storch de Gracia, I.; Bobo, S.; Martín-Ortega, M. D.; Chiara, J. L. Org. Lett. 1999, *1*, 1705-1708. (e) García-Moreno, M. I.; Díaz-Pérez, P.; Ortiz Mellet, C.; García Fernández, J. M. Chem. Commun. 2002, 848-849.
- For recent syntheses of allosamidin and analogues, see: (a) Sakuda, S.; Sugiyama, Y.; Zhou, Z.-Y.; Takao, H.; Ikeda, H.; Kakinuma, K.; Yamada, Y.; Nagasawa, H. J. Org. Chem. 2001, 66, 3356–3361. (b) Clark, M. A.; Goering, B. K.; Li, J.; Ganem, B. J. Org. Chem. 2000, 65, 4058–4069. (c) Wakabayashi, T.; Saito, H.; Shiozaki, M. Tetrahedron: Asymmetry 2000, 11, 2083–2091.
- (a) Tóth, G.; Pintér, I.; Kóvacs, J.; Haessner, R. *Magn. Reson. Chem.* **1997**, *35*, 203–208. (b) Mészaros, P.; Pintér, I.; Kóvacs, J.; Tóth, G. *Carbohydr. Res.* **1994**, 258, 287–291.

- Maya, I.; López, O.; Fernández-Bolaños, J. G.; Robina, I.; Fuentes, J. *Tetrahedron Lett.* 2001, 42, 5413–5416.
- López, O.; Maya, I.; Ulgar, V.; Robina, I.; Fuentes, J.; Fernández-Bolaños, J. G. *Tetrahedron Lett.* 2002, 43, 4313–4316.
- (a) Taverna, R. D.; Langdon, R. G. Biochem. Biophys. Res. Commun. 1973, 54, 593-599. (b) Khorlin, A. Ya.; Shiyan, S. D.; Lakhtina, O. E.; Shulman, M. L. Bioorg. Khim. 1975, 1, 393-395. (c) Shulman, M. L.; Lakhtina, O. E.; Khorlin, A. Ya. Biochem. Biophys. Res. Commun. 1977, 74, 455-459. (d) Mullins, R. E.; Langdon, R. G. Biochemistry 1980, 19, 1199-1205.
- Rees, W. D.; Gliemann, J.; Holman, G. D. *Biochem. J.* 1987, 241, 857–862.
- 32. Isbell, H. S.; Frush, H. L. J. Org. Chem. 1958, 23, 1309-1319.
- 33. Marcus, Y. Ion Solvation. Wiley: Chichester, 1985.
- 34. Frush, H. L.; Isbell, H. S. J. Res. Nat. Bur. Stand. 1951, 47A, 239–247.
- Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: New York, 1994; Chapter 11.
- Fuentes, J.; Olano, D.; Gasch, C.; Pradera, M. A. *Tetrahedron: Asymmetry* 2000, *11*, 2471–2482.
- 37. Fuhrhop, J.-H.; Helfrich, W. Chem. Rev. 1993, 93, 1565–1582.
- Benito, J. M.; Ortiz Mellet, C.; Sadalapure, K.; Lindhorst, T. K.; Defaye, J.; García Fernández, J. M. *Carbohydr. Res.* 1999, 320, 37–48.
- Prata, C.; Mora, N.; Lacombe, J.-M.; Maurizis, J.-C.; Pucci, B. Carbohydr. Res. 1999, 321, 4–14.
- 40. Szarek, W. A.; Jones, J. K. N. Can. J. Chem. 1965, 43, 2345–2356.
- 41. Shiozaki, M.; Mochizuki, T.; Hanzawa, H.; Haruyama, H. Carbohydr. Res. 1996, 288, 99–108.
- 42. Uchida, C.; Kimura, H.; Ogawa, S. *Bioorg. Med. Chem.* **1997**, 5, 921–939.
- 43. Knapp, S.; Purandare, A.; Rupitz, K.; Withers, S. G. J. Am. Chem. Soc. **1994**, *116*, 7641–7642.
- Boiron, A.; Zillig, P.; Faber, D.; Giese, B. J. Org. Chem. 1998, 63, 5877–5882.
- 45. Uchida, C.; Yamagishi, T.; Kitahashi, H.; Iwaisaki, Y.; Ogawa, S. *Bioorg. Med. Chem.* **1995**, *3*, 1605–1624.
- Pintér, I.; Kovács, J.; Tóth, G. Carbohydr. Res. 1995, 273, 99–108.
- 47. Kobayashi, Y. Carbohydr. Res. 1999, 315, 3-15.
- Kovács, L.; Ösz, E.; Györgydeák, Z. Carbohydr. Res. 2002, 337, 1171–1778.
- 49. Prata, C.; Mora, N.; Polidori, A.; Lacombe, J.-M.; Pucci, B. *Carbohydr. Res.* **1999**, *321*, 15–23.

72